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1. Introduction. The relation of the hypercircle inequality to a large class of 
numerical approximation problems has been demonstrated by Golomb and Wein- 
berger [1]. The applications considered in the present paper, while closely related 
to those of [1], concern a particular space of analytic functions and are similar in 
many respects to the results of Davis [2], [3] on errors of numerical approximation. 
Consideration of the functions analytic in I zI < R and continuous on IzI = R yields 
a Hilbert space having as its reproducing kernel an elementary form of the Szego 
kernel function. For approximation in terms of a given set of point functionals, the 
simplicity of this kernel yields equations defining the various terms of the hyper- 
circle approximation which may be solved in closed form. 

In Section 2 we review the hypercircle inequality and the various equations 
relevant to its use in constructing approximation rules. These results are specialized 
in the following section to a particular space of analytic functions, while Section 4 
contains examples to illustrate their use in specific cases. Presented as examples are 
an elementary interpolation rule and an integration formula for complex functions 
closely analogous to the 5-point rule of Birkhoff and Young. 

2. The Hypercircle Inequality and Related Results. We begin by listing certain 
definitions and results relating to the theory of a complex Hilbert space aC. The 
theorems included are well known and will be stated without proof.* 

DEFINITION 2.1. Let xi, * *, xn, be n independent elements of ac and cl, * c. 
be n given constants. The set y E aC such that (y, xi) = ci, i = 1, * n is called 
a hyperplane of codimension n and shall be denoted by Pn. 

DEFINITION 2.2. The portion of SC common to Pn and to the ball ?YI r is 
called a hypercircle Cr. 

THEOREM 2.1. Pn, may be represented in terms of the orthonormal set I xi* } derived 
by the Gram-Schmidt process from I x i } as 

(y, xi*) = as, i = , 

where 

al= CiEg(xi)f1/ 

(Xl, X1) . . . (Xk, XI) 

(2.1) 

(Xl, Xk-1) * (Xkk-1) [(x* Xk-.)q(X ** Xk)] 

C1 ... Ck 

Received November 9, 1966. 
* For relevant proofs see Davis [4], Chapter IX. 
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and g(xi, ***, Xk) is the Gram matrix of order k. 
THEOREM 2.2. The element of Pn closest to the origin (i.e., of minimum norm) is 

W = E8'> aixi* where the constants as are as in (2.1). 
THEOREM 2.3. If L is a bounded linear functional over X, then there exists a unique 

element h EE C such that Lx = (x, h), x E aC. The element h is called the representer 
of L. 

THEOREM 2.4 (THE HYPURCIRCLE INEQUALITY). Let w be the element of Pn which 
is nearest the origin. Then for any x C, and any bounded linear functional L having 
representer h 

(2.2) ILx - Lwl2 < (r2 - 1wI12)(Ilh 112 I Lxk*2). 

In the class of approximations to be considered, it will be assumed that we are 
given a bounded linear functional L over 3, a bound r on the norm of some given 
x E JC and auxiliary conditions on x defining a hyperplane Pn. In particular, we 
shall be given data of the form Ljx = cj, j = 1, * * , n, where Li are the point 
functionals associated with a fixed, discrete set of points in the complex plane. That 
is 

(2.3) Ljx = x(zj). 

We wish to express the approximation Lw in terms of a weighted sum of the values 
cj and to obtain explicit expressions for this approximation and for all of the terms 
occurring in the error bound implied by (2.2). 

We assume xC is such that it possesses a known reproducing kernel K(z, w). 
That is 

(2.4) (x(z), K(z, w)) = x(w), x E SC. 

If L is a bounded linear functional over JC, then the representer h of L is known 
to be given by operation on K as 

h(w) = LzK(z, w) 

and thus 

(2.5) Lx= (x,h), xG3C. 

From (2.5) we may express the given point functional data in the form of a hyper- 
plane Pn, where xj, the representer of Lj, is 

(2.6) xi(w) = K(zj, w). 

Assume that we have applied the Gram-Schmidt process to the set { x} ob- 
tained as in (2.6) and that the elements of the resulting orthonormal set {xi*} 
have been written in the form 

i 
Xi*= bikxk, i= 1 ***n, 

k-1 

where the bik are known constants. Considering Pn expressed in the form (x, xi*) 
as, i = 1, , n, we see that this is equivalent to 
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ai= (x, ibkxk = >2bikck 
k=l k=l 

and that we may write the estimate Lw as a weighted sum of the known hyperplane 
data ci by noting 

n n 

Lw = E akLxk* = Z ak(Xk*, h) 
k=1 k=1 

n k \ 

(= bkIC7) (Xk*, 

h) k=1 1=1 

n 

=E akCk, 
k-1 

where 

n 

(2.7) ak = Eblk (XI*h). 
I=k 

If we now consider the minimum problem 

min h-_3E kXk 
Ok kk1 

and its solution 

(2.8) h _ E (h,Xk*)Xk* 

we note that 
n/ n 

2I (h, Xk )Xk = (Z blk(h Xl *))Xk 
k=1 k=1 l-k 

and hence that f3k = ak. However, the Fourier solution (2.8) is equivalent to solving 
the normal equations 

n 

,ji(xi,xi) = (h,xi), j= 1,.**,,n, 
i=1 

and hence we shall have determined the weight coefficients atk by inverting the 
Gram matrix [(xi, x,)]f,,j.i. Denoting the required inverse matrix by [ijn we 
have 

n 

(2.9) ak = Y1k(Xi, h) . 

Having (2.9), the terms of the error bound implied by the hypercircle inequality 
are readily computed, since 

n n 

E |LXk*j - E (Xk*, h) (h, Xk*) 
k=1 k=1 

(2.10) - L[ (h, Xk*)Xk*] = L[Z akXk] 
k-1 k=1 

n 

- Z ak (Xky h) 
k=l 
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while the minimum distance term I Jw| is just given by I IWJ 12 = En 1ak2. 

From the above results we see that the problem of obtaining the estimate and 
bound implied by the hypercircle inequality may be summarized by stating that 
one has obtained a complete solution if an inverse is known for the Gram matrix 
formed by the representers Xk and one can compute the constants ak defined by (2.1). 

3. The Hilbert Space H2(R). We shall consider the space of functions analytic 
in lzl < R and continuous on lzl = R. It is known that each function of this class, 
which we shall denote by H2(R), possesses the representation** 

(3.1) f(z) = ~ / I= f (w) ds, 
(3.1) f(z) ;wl 7r (R -2zW) 

where ds. denotes the element of arclength along lwl = R. Equivalently, H2(R) is 
a Hilbert space where the appropriate inner product and norm definitions are 

(f,g) = fgdsw, f, g (EH2(R), 
(3.2) IWIR 

llfll = (3f) f) 112 < ,0 f EH H2(R). 

From (3.2) we see that the representation (3.1) is equivalent to stating that 
H2(R) has as its reproducing kernel 

(3.3) K (z, ii) = (2) -1R (R2 _ ZW)-. 

If one now considers a given set of point functionals 

L?f = f(zi), j = 1,. **,n, f EH2(R), 

then from (3.3) and (2.6), the corresponding set of representers are 

(3.4) x1(w) = (2x)-'R(R2 ) 

and, hence, 

(3.5) (xi, xj) = (2)-f'R(R2 _izj)-l. 

From the form of the inner product (3.5) it is evident that an explicit solution 
of the normal equations and evaluation of the constants ai of (2.1) depends on the 
ability to compute determinants having the form of Cauchy's double alternant 

Dn = det [(pi + qj)f1Y]Xj=i. 

However, it is known [4, p. 268] that 

n n - 
(3.6) Dn= (pi - pj)(qi - qj) l (pi + qj) 
and thus the required evaluations are a matter of applying (3.6) and performing 
some elementary algebra. Omitting the details, we note the following results: 

For the coefficients defined in (2.1) 

** Our definition of H2R) is quite restrictive in the sense that all of the results stated in 
this section hold for a much wider class of functions; however, for the intended applications, the 
above will be sufficient. 
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= (27rR-l)1/2(R2 - z11)2 1/2 

(3 7) ak = (2iftR 1) 1/2f-2-1R+ (R - ZkZk) Fei 2 

k k-1 

, (i)~~{lk+ (ft2 2j (k = 2,3, *.. ,n), 
3-1 1~=i - :j=1 

where 

(3.8) e rI J Zk - 
Z) [( f2 - ZkZ) 

] j fIl k- zli LiRt- 2kZLI 1 

The factor ei'k may be neglected, since in the applications we are only interested in 

jail. 
For the elements of the inverse matrix needed in (2.9) we obtain 

n n 

= (27R-1)R-(2n-2)FI (Rf2 - Zj) 11 (Rf2 - ZkZi) 
(3.9) Ll=1 k=l; 

[ r (Zi ZjI) ][I (Zj -Zk)] 
H1; ( z)i) k=1; (kHj) 

One may quite easily derive expressions for the orthonormal set { xi*} and the 
coefficients b ij relating { x * } to { xi }; however, they are not needed in the applica- 
tions and hence will not be included. 

4. Applications. Consider an elementary interpolation problem where we are 
given f(z1) = cl, f(z2) = C2 and we wish to approximate f(zo). In this case Lf = f(zo) 
and the representer h of L is simply 

h(w) = (2ir)-'R(R<ow)fl 

while 

flh l 2 = (2r)-'R (R2 -_ ozo)-1 

Also, one has 

(h, Xk) = (X-, h) = (2 'R (R< 2 - ZIZO), k 1, 2. 

Applying (3.9) and (2.9) yields 

Lw = aic + a2C2, 

where 

(R2 - zlzl) (R2 - z2Zl) (ZO - Z2) 
a, (f2 - -)f2- 2)(z- 

(4.1) (R- zlzo) (R2 - 2o) (Zl - Z2) 

a2 
(R2 - ZlZ2) (R2- 22Z2) (Zl -ZO 

2e = 
(R2 - zlzo) (R2 -Z2ZO) (Z1 - Z2) 

From (2.10) and the above values of al, a2, and I ihi 12 one obtains 

(4.2) Ilhll2-1 - Lx_ * 2 
12 - f f41Zo - ZlI ZO - Z2 12 

(4.2) Ilh 
= iLk 2ir f2 - ~o21ft12 - 

2 o2f2 - Z020) 
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while for the computation of I Iwf I2 = Iaif2 + Ia212, Eq. (3.7) yields 

a, = (2rR ) (1R - 2_zj) c1 

(4.3) a2 = (2irR-1) /2(R2 - Z2z2 /2 R_(Z2 - Z )- 

X [-C1(RI2- zlzl) + C2(RI-Z2-1)] 

The weights (4.1) are similar in form to the Lagrange interpolation coefficients, and 
in the limit as R --+ co they reduce to these coefficients. In considering n-point in- 
terpolation formulas, one may show that the weights are given by the obvious gen- 
eralization of (4.1) and, similarly, that (4.2), the portion of the error bound inde- 
pendent of the particular function being considered, generalizes in the obvious way. 
The expression for I lwl I2, however, is not conveniently expressible in the general 
case. 

As a second example we shall consider an approximation analogous to a special 
case of the 5-point integration rule 

(*1 h 
(4.4) j f(z)dz - [24fo + 4(fi + f3) - (f2 + f4)] 

*3 

developed by Birkhoff and Young [5]. In (4.4), fk = f(Zk) and Zk = Zo + (i)k-lh, 

k = 1, *, 4, wheref is analytic in Iz -zol ? h1, hi > lhl, with h a known com- 
plex constant. If one takes zo = 0, h = i, then (4.4) becomes 

(4.5) f f(z)dz f - {24f(0) + 4[f(i) + f(-i)] - [f(1) + f(-1)]} 

We shall consider the hypercircle result equivalent to (4.5) by taking 

Lf= f(z)dz, fEH2(R), R>1, 

with Lkf = f(Zk) = Ck, k = 1, *, 5, where 

Z1 = - Z6 = X, z2 = -Z4 = iX, z3 = 0, 

and X is an as yet unspecified real constant. This yields the coefficient matrix 

[G1 G2 G3 -2 G4] 
G72 G1 G3 G4 G2 

R G3 G3 G3 G3 G3 
27r G2 G4 G3 G1 C2, 

,_G4 ?72 G3 G2 G1i_ 

where GC = (R2 - X2)-', G2 = (R2 + iX2)-1 G3 = R-2, G = (R2 + X2)-'. 
Application of the results of the previous section yields the inverse 

[1 Y 2 Y3 T2 Y4 

/27r (R8 - X8) Y2 i Y3 Y4 Y2 

~\R)16X8R 4 Y3 Y3 '6 
3 

RJ16X R4 
Y2 Y4 Y3 Yi T2 

Y 4 Y2 Y3 Y2 YiJ 

where 
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7Yi = (R4 + X4)(R2 + X2), 72= (R4 _ -X4)(R2 + iX2), 73 =-4R 

74 = (R4 + 4)(R2 - x2) 7 = 16R14(R8 - X8)f 

while for the remaining inner products we have 

(h, xi) = (h, x5) = - (27r)f1iR tan7l (XR"2) 

(h, X2) = (h, X4) = - (27r)f'iR tanh-1 (XR-2) 

(h, X3) = - (27r)fiR(XR 2). 

Thus one finds 

LW = a1[f(X) + f(-X)J + ad[f(iX) + f(-iX)J + a3f(O), 

where 

al = i(R8 - X8) (4X9R2)-l[(R4 + X4) tan7l (XR-2) 

+ (R4 - X4) tanhl (XRi-2) - 2XR2' 

(4.6) a02 = i(R8 - X8) (4X9R2)-[(R4 - X4) tanC (XR-2) 

+ (R4 + X4) tanb1' (XR-2) - 2XR2'1 

as = -i(R8 - X8)R2?-J9[tanC (XR-2) + tanhlf (XR2) 

-2XR6(R8 - X8)_11 

The constants determining 1 iwi j are 

a, = (27rR1 )1/2 (R2 - 2)1/2C 

a2 = (27R1l)1/2(R2 _ X2)1/2[-XR(1 - i` 1[- (R2 _ X2)C1 + (R2 iX2)C21 

a3 = (2R-1) 1/2R[ix2R2r_l 

X [(R -X2)(R2 + iX2)c1 - (R2 - A2)(R2 - 2)C2 + R4c] 

a4 = (2wR-1)/2(R2 
_ 

X2)1/2[2XRI(i + i)]-' 
2[ 2 2~~~~~~~~~~~~ 

) 
[X2X3R(1+ 2 

X R2[ _ (R2 X2) (R2 + iX2)c1 + (R2 - ik2) (R2 _ 
X2 )C2 

-R4ca + (R2 + jA2) (R2 + X2)C4] 

a5 = (2wRR-)1/2(R2 -_x2)1/2[4X4R4rl 

X R2[(R2 _ X2)(R4 + X4)cl - (R4 - X4)(R2 -_iX2)c2 + R%C3 
- (R4 _ X4) (R2 + iX2)c4 + (RI4 + X4) (R2 + X2)C5] 

while that portion of the error bound independent of the particular function op- 
erated upon is 

2- fAll2 - ILxk*12 = 2(7R)-1 E (2k + 1)-2R-4k 
k1- k-0 

- (27rRX10)-(R8 - X8)[R4(tan71 (XR-2) + tanh-1 (xR?2))2 

+ ;X4(tan1 (XR-2) - tanhlf (XR-2) ) 2] 

+ 2R7(7rX8)-1 - 2R(7r9_1 (R8 - X8)[tan-A (XR-2) + tanh'1 (XR )]} 
In the limit as R -> oo, the weights (4.6) reduce to 
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a i(30X4)-1 (3 - 5X2) 

a2 i (30X4)-l(3 + 5X2) 

a3 - 2i(5X4)-1(1 5X2) 

which for the case X = 1 are identical with those of the Birkhoff-Young rule (4.5). 
The constant X has been included to indicate the possibility of producing an op- 
timum choice of points Zk. For example, one may form 0o-/aX = 0 and solve the re- 
sulting transcendental equation to obtain X = X(R) such that o- is a minimum for 
each given R. We shall not carry out the details of such a computation, but merely 
note that expanding the resulting transcendental equation in powers of R-' yields 
as the leading term (4/63) X12R-20(7X4 - 3) and, hence, for the integration of func- 
tions having a large radius of analyticity, a near optimal choice of X would be 
X = (3/7)14. 

Reactor Engineering Division 
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