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By Richard A. Valentin

1. Introduction. The relation of the hypercircle inequality to a large class of
numerical approximation problems has been demonstrated by Golomb and Wein-
berger [1]. The applications considered in the present paper, while closely related
to those of [1], concern a particular space of analytic functions and are similar in
many respects to the results of Davis [2], [3] on errors of numerical approximation.
Consideration of the functions analytic in |2| < R and continuous on |z| = R yields
a Hilbert space having as its reproducing kernel an elementary form of the Szeg6
kernel function. For approximation in terms of a given set of point functionals, the
simplicity of this kernel yields equations defining the various terms of the hyper-
circle approximation which may be solved in closed form.

In Section 2 we review the hypercircle inequality and the various equations
relevant to its use in constructing approximation rules. These results are specialized
in the following section to a particular space of analytic functions, while Section 4
contains examples to illustrate their use in specific cases. Presented as examples are
an elementary interpolation rule and an integration formula for complex functions
closely analogous to the 5-point rule of Birkhoff and Young.

2. The Hypercircle Inequality and Related Results. We begin by listing certain
definitions and results relating to the theory of a complex Hilbert space 3¢. The
theorems included are well known and will be stated without proof.*

DErINITION 2.1. Let 1, - - -, 7, be n independent elements of 3¢ and ¢y, « -+, ¢a
be n given constants. The set y € 3¢ such that (y, zs) = ¢i, ¢ =1, - -+, n is called
a hyperplane of codimension n and shall be denoted by P..

DzriniTiON 2.2. The portion of 3 common to P, and to the ball [[y[| = ris
called a hypercircle C..

TaEOREM 2.1. P, may be represented in terms of the orthonormal set {x*} derived
by the Gram-Schmidt process from {x;} as

(y’xi*)=ai’ i=1,--,n,

where

@ = alg(e)] ™

(1, 131) s (ka, $l)
(2.1) : .
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and gz, * - -, xx) s the Gram matrix of order k.

THEOREM 2.2. The element of P, closest to the origin (i.e., of minimum norm) 1is
w = Dty ax* where the constants a; are as in (2.1).

THEOREM 2.3. If L is a bounded linear functional over 3C, then there exists a unique
element b & 3C such that Lx = (x, h), x € 3C. The element h is called the representer
of L.

TuHEOREM 2.4 (THE HYPuRCIRCLE INEQUALITY). Let w be the element of P, which
1s nearest the origin. Then for any x € C, and any bounded linear functional L having
representer h

22) Lo = Luf* 5 6* = (I = 35 1zmel).

In the class of approximations to be considered, it will be assumed that we are
given a bounded linear functional L over 3¢, a bound r on the norm of some given
z & 3¢ and auxiliary conditions on z defining a hyperplane P,. In particular, we
shall be given data of the form L = ¢;, j = 1, - - -, n, where L; are the point
functionals associated with a fixed, discrete set of points in the complex plane. That
is

(2.3) Lz = x(2;) .

We wish to express the approximation Lw in terms of a weighted sum of the values
¢; and to obtain explicit expressions for this approximation and for all of the terms
occurring in the error bound implied by (2.2).

We assume 3JC is such that it possesses a known reproducing kernel K(z, ).
That is

(2.4) @), K(z,m)) = z(w), zEX.

If L is a bounded linear functional over 3¢, then the representer h of L is known
to be given by operation on K as

h(w) = L.K(z, )
and thus
(2.5) Lx = (x,h), T ER.

From (2.5) we may express the given point functional data in the form of a hyper-
plane P,, where x;, the representer of L;, is

(2.6) zj(w) = K(z;, @) .

Assume that we have applied the Gram-Schmidt process to the set {z;} ob-
tained as in (2.6) and that the elements of the resulting orthonormal set {x;*}
have been written in the form

z
x* =D bari, di=1,--,n,
k=1

where the b are known constants. Considering P, expressed in the form (z, z*) =
a; t =1, ---, n, we see that this is equivalent to
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G; = (x, E bum:) = Egz—kck
k=1 k=1

and that we may write the estimate Lw as a weighted sum of the known hyperplane
data ¢; by noting

Lw = k;l aLa* = E ar(xi*, h)
n k
=2\ bk101>(xk*, k)
k=1 =1
= E kC y
k=1
where
@7 = IZ;, bu(z*, h) .
If we now consider the minimum problem
min ||h — Z BrZr
Bx
and its solution
(2.8) Hh — > (b, m)e*
k=1

we note that
> (hymMa* = 2 (E b (h, x;*))x,,,
k=1 k=1 l=k

and hence that 8, = @. However, the Fourier solution (2.8) is equivalent to solving
the normal equations

z;ﬁi(xi,xj) = (h,.’l}j), ]= 1’ R
and hence we shall have determined the weight coefficients a; by inverting the

Gram matrix [(z;, 2;)]%, j=1. Denoting the required inverse matrix by [y.;]%, -1, we
have

(2.9) ar = IZ:‘{ Yu(xy, h) .

Having (2.9), the terms of the error bound implied by the hypercircle inequality
are readily computed, since

3 L2l = 3 @t b O 20
(210) = L[I:le (h, xk*)xk*:l = L[i a)ﬂ?k:l
= k:zl CT‘k(xk; h) )
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while the minimum distance term ||w|| is just given by [[w|[[2 = D k=1 a2

From the above results we see that the problem of obtaining the estimate and
bound implied by the hypercircle inequality may be summarized by stating that
one has obtained a complete solution if an inverse is known for the Gram matrix
formed by the representers z; and one can compute the constants a, defined by (2.1).

3. The Hilbert Space H*R). We shall consider the space of functions analytic
in 2| < R and continuous on |z| = R. It is known that each function of this class,
which we shall denote by H?(R), possesses the representation**

3.1) &) = 2% luolmr (_RTf(:v)—zw_) Ao

where ds, denotes the element of arclength along |w| = R. Equivalently, H2(R) is
a Hilbert space where the appropriate inner product and norm definitions are

(f,9) = ol f9dsw , f,gEHz(R),
(3.2) vi=k

Ifl=GN"*<w, [fEHR).

From (3.2) we see that the representation (3.1) is equivalent to stating that
H?*(R) has as its reproducing kernel

3.3) K, ®w) = @r)'R(R’ — zw)~".
If one now considers a given set of point functionals

Lif = f(z)), Jj=1.4n, fEHz(R),
then from (3.3) and (2.6), the corresponding set of representers are

(3.4) z;(w) = Cr)'R(R® — z;w) ™
and, hence,
(3.5) (xiy z;) = (21!')-1R(R2 - 2,’2,‘)_1 .

From the form of the inner product (3.5) it is evident that an explicit solution
of the normal equations and evaluation of the constants a; of (2.1) depends on the
ability to compute determinants having the form of Cauchy’s double alternant

D, = det [(ps + ;)" Tiim1 -
However, it is known [4, p. 268] that

n n -1
(3.6) Dy = 1;!: @ — pi)(g: — Qf)[,Hl (p: + qi)] ’
1. )=
and thus the required evaluations are a matter of applying (3.6) and performing
some elementary algebra. Omitting the details, we note the following results:
For the coefficients defined in (2.1)

** Qur definition of H¥ R) is quite restrictive in the sense that all of the results stated in
this section hold for a much wider class of functions; however, for the intended applications, the
above will be sufficient.



114 R. A. VALENTIN

5

L= (2eR7Y) 1/2(R2 - 2121)1/251

37 4, = (27rR_1)1/2R_k+1(R2 . zkék)lhewk[ﬁ (2 — 2,):1—
il (—1)k+j—c-j|:kI-:i (R2 —_ 2]‘2’1):] (l\”, = 2’ 3’ - .’n) ,

=1
where
. k—1 5 _ 3 RZ — 3.2 ) -1
3-8 i = { (zk zl) [ ( k<l .
38 ‘ 1I=Il l2e — 21| L|R® — 212

The factor e*: may be neglected, since in the applications we are only interested in
]ail .
For the elements of the inverse matrix needed in (2.9) we obtain

v = <21rR“>R‘”"‘2’[H R —zz) JI (R - zkza]
(39) =1 k=1; (k#=7)

: fI (2: — 21) ﬁ z; — z) —l.
[ ]

I=1; (I#17) k=1; (k=j)

One may quite easily derive expressions for the orthonormal set {z*} and the
coefficients b;; relating {x.*} to {x,}; however, they are not needed in the applica-
tions and hence will not be included.

4. Applications. Consider an elementary interpolation problem where we are
given f(z1) = ¢1, f(22) = c: and we wish to approximate f(zo). In this case Lf = f(z0)
and the representer & of L is simply

hw) = @m)'R(R® — zow) ™"
while
”h“2 = (27")_1R(R2 — 5020)_l .
Also, one has
(h,x0) = (@, h) = Cr) 'R(R® — z220)™', k=1,2.
Applying (3.9) and (2.9) yields

Lw = aic; + asce,

where
o = (B — 220) (R* — 2321) (20 — 2)
(4.1) (B = 220) (R* = 2220) (21— 2)
@ = (R? — 2120) (R® — Z25) (21 — 20)

B (R2 — Z120) (R2 — Zs20) (21 — 22) .

From (2.10) and the above values of o, as, and ||h]|? one obtains

: < «2_ R Rz — z1)’|20 — 2|
4.2) ”hH B 1; Ika i C2r |R2 - 2120|21R2 - 2220]2(1'32 — 20%0) ’
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while for the computation of |[w|[? = |ai|* + ||, Eq. (3.7) yields

a = @rR™HR? - 22) "%
4.3) az = CrR™HVEHR? — 252) R 2y — 21)"
X [—CL(R? — 217)) + C2(R® — 257)] .

The weights (4.1) are similar in form to the Lagrange interpolation coefficients, and
in the limit as B — o they reduce to these coefficients. In considering n-point in-
terpolation formulas, one may show that the weights are given by the obvious gen-
eralization of (4.1) and, similarly, that (4.2), the portion of the error bound inde-
pendent of the particular function being considered, generalizes in the obvious way.
The expression for ||w|[?, however, is not conveniently expressible in the general
case.

As a second example we shall consider an approximation analogous to a special
case of the 5-point integration rule

21
(1.4) [t = st 4+ 466, + 70 = o +10)

23
developed by Birkhoff and Young [5]. In (4.4), fi = f(zx) and 2 = 20 + (2)* A,
k=1, ---,4, where fis analytic in |2 — 2o| = k1, b1 > |h], with h a known com-

plex constant. If one takes zo = 0, A = 7, then (4.4) becomes

W) [ S =ik 1247(0) + 4156) + 1=~ SO + S=D)

We shall consider the hypercircle result equivalent to (4.5) by taking

Lf=/'.f(z)dz, FEH®R), R>1,
with Lyf = f(zr) = e, k=1, -+, 5, where

2= —2 =N\, 29 = —24 =1\, 23=0,

and X is an as yet unspecified real constant. This yields the coefficient matrix

Gy G- G G Gy
G: G G G G
E_ Ga Gs Gs Gs Ga
27r G2 G4 G3 Gl @2 !
G G, Gs G G,
where Gy = (R? — M), G2 = (R* 4 )7, G5 = R2, Gy = (R? + N2)~L,
Application of the results of the previous section yields the inverse

Y1 Y2 Y3 e Ya

2r | (R® — \%) Y Y1 3 Y4 Y2
—R—>mr v3 Y3 ¥s Y3 vs3 |,

Y Y4 Y3 Y1 Y2
Y4 ¥ 3 Y2 Y1

where
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=R +NE +N), 1=@R -ME+2), 1= 4R
ye = (R4 + x4) (R2 _ XZ) , vy = 16R14(R8 _ XS)-I ,
while for the remaining inner products we have
(hy 1) = (h, z5) = —(27) %R tan™ A\R™?)
(B, x2) = (B, zs) = — (27) %R tanh™ (AR™?)
(h, z3) = —(27) " MR(\R™?).
Thus one finds
Lw = ai[f(A) + f(=N)] + e2[f(N) + f(—iN)] + asf(0) ,
where
ar = i(R* — N) (@R 7[(R' + \*) tan™ (R™?)
+ (R* — A" tanh™ (\R™?) — 2)RY],
(4.6) a2 = i(R® — A @NRH[(R* — \Y) tan™' A\R™?)
+ (R 4 ") tanh™ OB™') — 23R’],
az = —i(R® — A)RA*[tan™ \R™?) + ta,nh"‘1 AR
—2AR*(R® — A%)7].
The constants determining ||w|| are
a = (21|'Rj1)1/2(R2 _ )‘2)1/201,
ar = @R B — W) -AR(A — )] - (B — N + (B — el
as = 2R’ RNRYT
X [(R* = N)(R® + \)ey — (R — N) (R — M) + R'ci],
ay = (21rR’1)1/2(R2 _ )\2)1/2[2)\313'(1 + 1.')]"1
X R [— (R’ = N)R* + 2\ Der + (R — aN) (B — Wee
—Rcs + (R* + %) (R* 4+ N)ed],
as = (2WR_1)1/2(R2 _ )‘2)1/2[4)‘4R4]-1
X R [(R* — M) (R' + Mer — (B' — A (R — \")ez + R
— R = \YR* + MDea+ (B + M) (R + N)ed] ,

while that portion of the error bound independent of the particular function op-
erated upon is

b ©
o = |n|* — gl‘, |Lz*|® = 2(xR)™* g; 2k + 1)7’R™*
— {@xRA\) T (R® — \})[R*(tan* \R™?) + tanh™ (AR™?))?
+ M(tan™ (AR™®) — tanh™ (\R™"))’]

+ 2R"(m\%)™! — 2R(m\")'(R® — A%)[tan™* (\R™®) + tanh™' (\R7)]} .
In the limit as R — «, the weights (4.6) reduce to
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a; = i(B0AY I3 — 5\%),
az — 13013 + 50,
as— —2%(GA) (1 — 5\%)

which for the case N = 1 are identical with those of the Birkhoff-Young rule (4.5).
The constant A has been included to indicate the possibility of producing an op-
timum choice of points 2. For example, one may form d¢/dN = 0 and solve the re-
sulting transcendental equation to obtain A = A(R) such that ¢ is a minimum for
each given R. We shall not carry out the details of such a computation, but merely
note that expanding the resulting transcendental equation in powers of B! yields
as the leading term (4/63)A2R—-2(7\* — 3) and, hence, for the integration of func-
tions having a large radius of analyticity, a near optimal choice of A would be
N = (/7).
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